

Engineering Gold Laboratory Data 1

Professor Peter Styring took over five years to develop the lubricant for his self-waxing skis. He developed over a hundred possible formulations. All of these needed testing in the laboratory before he got as far as the ski slopes. Professor Styring carried out three enquiries.

- In the first enquiry he put the different formulations into a freezer to see if they froze.
- The second enquiry tested the fluidity of the formulations (how easily the liquid flows). He measured the volume of liquid that passed through a thin capillary tube in 30 seconds. Table 1 shows some of his results.
- In his third enquiry Professor Styring made a fake ski slope in his lab to test the self-lubricating skis on.

Table 1: Lab data on formulations

Lubricant formulations	Did it freeze?	Volume of formulation collected in 30 seconds (ml)
А	YES	-
В	NO	35.2
С	NO	15.1
D	NO	21.0
Е	YES	-
F	YES	-
G	NO	16.5
Н	NO	14.2
I	YES	-
J	NO	31.3
K	NO	27.8
L	YES	-
M	NO	12.1
N	YES	-
0	NO	29.6
Р	NO	25.3
Q	NO	8.6
R	YES	- /
S	YES	-
Т	NO	17.6

A group of students repeated Professor Styring's third enquiry using some of their own formulations. Table 2 on the next page shows their results.

Engineering Gold Laboratory Data 1

Table 2: Height of plank and ski movement

Lubricant	Reading 1	Reading 2	Reading 3	Reading 4	Reading 5	Average
4	21	23	28	24	25	
Œ	26	36	31	32	30	
ပ	18	19	19	18	19	
۵	22	21	23	18	27	
ш	37	33	34	32	10	

All figures show the height if the ramp in cm when the ski started to move.

Engineering Gold Laboratory Data 1

Questions

- 1. What does the word fluidity mean?
- 2. Which formulation had the fastest flow rate?
- 3. Which formulation had the slowest flow rate?
- 4. Professor Styring did not carry out the second enquiry on all the formulations. Why?
- **5.** Professor Styring tested seven formulations in the final laboratory enquiry. Which do you think he used? Explain your choice.
- 6. a. Identify any outliers in the data in Table 2. Draw a circle around them.
 - b. What might have caused these outliers?
 - c. What would you do if you found outliers in one of your enquiries?
- 7. Complete Table 2 by calculating the average result for each formulation. You must decide whether to include any outliers in your calculation.

